Structure Reports

Online
ISSN 1600-5368

A triclinic polymorph of $\operatorname{bis}\left(\mu_{2}\right.$-ethane-thiolato)-1:2 $\kappa^{2} S: S ; 3: 4 \kappa^{2} S: S$-(μ_{4}-disulfido1:2:3:4 $\left.\kappa^{4} S: S: S^{\prime}: S^{\prime}\right)$ tetrakis[tricarbonyliron(II)](2 Fe-Fe)

Youtao Si, ${ }^{\text {a* }}$ Hui Chen ${ }^{\text {b }}$ and Chang Neng Chen ${ }^{\text {b }}$
${ }^{\text {a Key }}$ Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fujian Normal University, Fuzhou 350007, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China Correspondence e-mail: siyoutao@gmail.com

Received 27 April 2011; accepted 9 May 2011
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.048 ; w R$ factor $=0.100$; data-to-parameter ratio $=18.8$.

Next to the monoclinic polymorph [Cheng et al. (2005). Acta Cryst. E61, m892-m894], the triclinic title compound, $\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{~S}_{2}\right)(\mathrm{CO})_{12}\right]$, is the second known form of this composition. The structure is composed of an $\left[\mathrm{Fe}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)(\mathrm{S})(\mathrm{CO})_{6}\right]$ subcluster, which is linked to its counterpart by an inversion centre located at the mid-point of the central disulfide bond. The $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ core of each subcluster exhibits a butterfly-like shape, with two S atoms bridging two Fe atoms. In the subcluster, each Fe atom is coordinated in a distorted octahedral coordination by three terminal carbonyl C atoms, two S atoms and one Fe atom. The crystal packing is accomplished through van der Waals interactions.

Related literature

For more details about hydrogenases, including $\mathrm{Fe}-\mathrm{Fe}$ hydrogenases, see: Darensbourg et al. (2000). Two procedures are mainly used for the synthesis of model compounds containing the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ subcluster of $\mathrm{Fe}-\mathrm{Fe}$ hydrogenases, see: Lawrence et al. (2001); Li \& Rauchfuss (2002). The monoclinic polymorph (space group $P 2_{1} / c$) of the title compound has been reported by Cheng et al. (2005).

Experimental

Crystal data
$\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{~S}_{2}\right)(\mathrm{CO})_{12}\right]$

$$
\begin{aligned}
& \gamma=66.103(17)^{\circ} \\
& V=678.2(6) \AA^{3} \\
& Z=1 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.46 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.15 \times 0.12 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

$M_{r}=745.88$
Triclinic, $P \overline{1}$
$a=8.365$ (4) \AA
$b=9.296(5) \AA$
$c=10.209$ (5) A
$\alpha=87.57$ (2) ${ }^{\circ}$
$\beta=70.082(17)^{\circ}$

Data collection

Rigaku Mercury70 CCD diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.771, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048 \quad 163$ parameters
$w R\left(F^{2}\right)=0.100 \quad \mathrm{H}$-atom parameters constrained
$S=0.99$
3060 reflections
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \AA^{-3}$
5323 measured reflections 3060 independent reflections 1939 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Fe} 1-\mathrm{C} 1$	$1.786(5)$	$\mathrm{Fe} 2-\mathrm{C} 5$	$1.789(5)$
$\mathrm{Fe} 1-\mathrm{C} 2$	$1.793(5)$	$\mathrm{Fe} 2-\mathrm{C} 6$	$1.794(5)$
$\mathrm{Fe} 1-\mathrm{C} 3$	$1.824(5)$	$\mathrm{Fe} 2-\mathrm{C} 4$	$1.806(5)$
$\mathrm{Fe} 1-\mathrm{S} 1$	$2.2393(15)$	$\mathrm{Fe} 2-\mathrm{S} 1$	$2.2457(15)$
$\mathrm{Fe} 1-\mathrm{S} 2$	$2.2688(16)$	$\mathrm{Fe} 2-\mathrm{S} 2$	$2.2711(18)$
$\mathrm{Fe} 1-\mathrm{Fe} 2$	$2.5183(15)$	$\mathrm{S} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.113(2)$

Symmetry code: (i) $-x,-y+2,-z+2$.

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the National Natural Science Foundation of China (21071145) for financial support.

[^0]
metal-organic compounds

References

Cheng, L.-X., Ma, C.-B., Hu, M.-Q. \& Chen, C.-N. (2005). Acta Cryst. E61, m892-m894.
Darensbourg, M. Y., Lyon, E. J. \& Smee, J. J. (2000). Coord. Chem. Rev. 206, 533-561.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Lawrence, J. D., Li, H. X., Rauchfuss, T. B., Benard, M. \& Rohmer, M. M. (2001). Angew. Chem. Int. Eng. Ed. 40, 1768-1771.

Li, H. \& Rauchfuss, T. B. (2002). J. Am. Chem. Soc. 124, 726-727. Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

A triclinic polymorph of bis $\left(\mu_{2}\right.$-ethanethiolato)-1:2 $\kappa^{2} S: S ; 3: 4 \kappa^{2} S: S$ - $\left(\mu_{4}\right.$-disulfido1:2:3:4 $\left.\kappa^{4} S: S: S^{\prime}: S^{\prime}\right)$ tetrakis[tricarbonyliron(II)](2 $\mathrm{Fe}-\mathrm{Fe}$)

Y. Si, H. Chen and C. N. Chen

Comment

$\mathrm{Fe}-\mathrm{Fe}$ hydrogenases are enzymes capable of efficiently catalysing the reversible transformation between H^{+}and H_{2} (Darensbourg et al., 2000). Chemists have been trying to achieve H_{2} production technologies of practical use by studying the catalytic process by such kind of hydrogenases, aiming at solving the current energy problem. The well known active site of $\mathrm{Fe}-\mathrm{Fe}$ hydrogenases, established by X-ray crystallographic and spectroscopic techniques, has an $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ cluster linked to a $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ cuboidal unit by a cysteine- S atom. While the $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ unit is assumed to be reponsible for transferring eletrons, the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ cluster plays an important role in the catalysis process. Thus, many works concentrate on compounds containing the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ cluster.

Two kinds of procedures are frequently used to synthesize model substances of the $\mathrm{Fe}_{2} \mathrm{~S}_{2}$ cluster, e.g. $\mathrm{Fe}_{2}\left(\mathrm{SCH}_{2}\right)_{2} \mathrm{~N} R(\mathrm{CO})_{6}$. The first procedure is a condensation of $\left(\mathrm{ClCH}_{2}\right)_{2} \mathrm{~N} R$ and $\mathrm{Li}_{2}\left[\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}\right]$, and the second is a condensation of $\mathrm{Fe}_{2}(\mathrm{SH})_{2}(\mathrm{CO})_{6}$ with formaldehyde in the presence of primary amines (Lawrence et al., 2001; Li \& Rauchfuss, 2002). In both cases, $\mathrm{LiEt}_{3} \mathrm{BH}$ are used to cleave the $\mathrm{S}-\mathrm{S}$ bond of the starting material $\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}$. When trying to get some new complexes using the first procedure, we found some by-products which reflect the diversity of the reactivity of $(\mathrm{FeS})_{\mathrm{n}}$ clusters. Here we report a triclinic polymorph, (I), of $\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{~S}_{2}\right)(\mathrm{CO})_{12}\right]$. Another monoclinic polymorph (space group $P 2_{1} /$ c) has been reported previously (Cheng et al., 2005).

As can be seen in Fig. 1, the crystallographically imposed center of inversion is located at the mid-point of the S1—S1A bond, and thus the asymmetric unit contains one half of the $\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{~S}_{2}\right)(\mathrm{CO})_{12}\right]$ formula unit. The two Fe atoms of the asymmetric unit ($\mathrm{Fe} 1, \mathrm{Fe} 2$) are linked through an $\mathrm{Fe}-\mathrm{Fe}$ single bond and are bridged by two S atoms ($\mathrm{S} 1, \mathrm{~S} 2$). Thus a butterfly-like arrangement is formed, with a dihedral angle between the two $\mathrm{Fe}_{2} \mathrm{~S}$ planes being 100.53 (6) ${ }^{\circ}$. The average $\mathrm{Fe}-\mathrm{S}$ bond length is $2.256(16) \AA$, and the average $\mathrm{Fe}-\mathrm{S} — \mathrm{Fe}$ angle is $67.9(6)^{\circ}$. The octahedral coordination geometry around each Fe atom is completed by three carbonyl C atoms [average $\mathrm{Fe}-\mathrm{C}$ distance 1.799 (14) \AA, average $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ angle $\left.97(4)^{\circ}\right]$.

The packing diagram is shown in Fig. 2. There is only one molecule in each unit cell, and neighbouring molecules pack along the a axis; the crystal is stabilized by van der Waals interactions.

In comparison with the monoclinic polymorph (Cheng et al., 2005), the configuration of the $\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{~S}_{2}\right)(\mathrm{CO})_{12}\right]$ molecules is different, just like the packing in the crystal.

supplementary materials

Experimental

All experiments were carried out under an atmosphere of purified, oxygen-free and dry nitrogen using standard Schlenk techniques. THF and hexane were dried and freshly distilled prior to use according to standard methods. The commercially available products paraformaldehyde, $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right], \mathrm{LiBEt}_{3} \mathrm{H}, \mathrm{F}_{3} \mathrm{CCOOH}$ and $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NH}_{2}$ were of reagent grade and were used as received. The starting material $\left[\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}\right]$ was prepared according to the literature.
$\left[\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}\right](1 \mathrm{mmol}, 0.344 \mathrm{~g})$ was dissolved in dry THF $(40 \mathrm{ml})$ under a nitrogen atmosphere and then cooled to 195 K with acetone and liquid nitrogen. After the solution was stirred for 30 minutes, $\mathrm{LiBEt}_{3} \mathrm{H}(2 \mathrm{mmol})$ was added dropwise very slowly. At the midpoint of the addition, the color of the reaction mixture turned from red to dark green; for the rest of addition it remained green. After another 30 minutes, $\mathrm{F}_{3} \mathrm{CCOOH}(2 \mathrm{mmol}, 0.149 \mathrm{ml})$ was added. The new mixture was stirred for an additional hour. The cool solution was added to a mixture of paraformaldehyde ($40 \mathrm{mmol}, 1.2 \mathrm{~g}$) and $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NH}_{2}$ $(1 \mathrm{mmol}, 1.98 \mathrm{ml})$ in THF which had been stirred for 10 h and cooled to 273 K . The last mixture was stirred for 24 h and the majority of the solvent was evaporated under vacuum. The remaining residual was filtered through silica gel. A red fraction was collected by elution with hexane. Recrystallization of the crude product from fresh distilled pentane in a fridge at 253 K for several days gave the title complex as a by-product in low and varing yields ($<5 \%$).

Refinement

Hydrogen atoms were placed at idealized positions and allowed to ride on their parent atoms, with CH_{2} and CH_{3} bonds set equal to 0.97 and $0.96 \AA$, respectively and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for hydrogen atoms of C 7 , and $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}(\mathrm{C})$ for hydrogen atoms of C8. The highest residual peak was located at $0.88 \AA$ from S1.

Figures

Fig. 1. The molecular structure of (I), with atom labels and 20% probability displacement ellipsoids for all non-H atoms. [Symmetry operator A : $-x,-y+2,-z+2$.]

Fig. 2. The packing diagram of (I), viewed down the \mathbf{b} axis.
$\operatorname{bis}\left(\mu_{2}\right.$-ethanethiolato)-1:2 $\kappa^{2} S: S ; 3: 4 \kappa^{2} S: S$ - (μ_{4}-disulfido-1:2:3:4 $\left.\kappa^{4} S: S: S^{1}: S^{\prime}\right)$ tetrakis [tricarbonyliron(II)](2 Fe—Fe)

Crystal data
$\left[\mathrm{Fe}_{4}\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{~S}_{2}\right)(\mathrm{CO})_{12}\right] \quad Z=1$
$M_{r}=745.88$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=8.365$ (4) \AA
$b=9.296(5) \AA$
$c=10.209(5) \AA$
$\alpha=87.57(2)^{\circ}$
$\beta=70.082(17)^{\circ}$
$\gamma=66.103(17)^{\circ}$
$V=678.2(6) \AA^{3}$
$F(000)=370$
$D_{\mathrm{x}}=1.826 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1200 reflections
$\theta=2.1-27.5^{\circ}$
$\mu=2.46 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, orange
$0.15 \times 0.12 \times 0.03 \mathrm{~mm}$

Data collection

Rigaku Mercury 70 CCD
diffractometer
Radiation source: fine-focus sealed tube graphite
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
$T_{\text {min }}=0.771, T_{\text {max }}=1.000$
5323 measured reflections

3060 independent reflections
1939 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.100$
$S=0.99$
3060 reflections
163 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0419 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.39$ e \AA^{-3}
$\Delta \rho_{\min }=-0.42$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Fe1	$0.31028(8)$	$1.00320(7)$	$0.78114(6)$	$0.03542(19)$
Fe2	$0.33627(9)$	$0.73745(7)$	$0.86174(7)$	$0.03887(19)$
S1	$0.06448(15)$	$0.94806(12)$	$0.89480(11)$	$0.0364(3)$
S2	$0.37128(16)$	$0.79317(13)$	$0.63756(12)$	$0.0425(3)$
O2	$0.2904(5)$	$1.1642(4)$	$1.0304(4)$	$0.0659(10)$
O1	$0.7064(5)$	$0.9407(5)$	$0.6498(4)$	$0.0765(12)$
O3	$0.1430(6)$	$1.2810(4)$	$0.6441(4)$	$0.0801(13)$
O5	$0.3256(6)$	$0.7693(4)$	$1.1491(4)$	$0.0767(12)$
C1	$0.5507(7)$	$0.9675(5)$	$0.6996(5)$	$0.0485(12)$
O6	$0.7439(5)$	$0.5643(5)$	$0.7670(5)$	$0.0864(14)$
C3	$0.2065(7)$	$1.1746(6)$	$0.6958(5)$	$0.0477(12)$
C6	$0.5855(8)$	$0.6296(6)$	$0.8033(5)$	$0.0559(14)$
C2	$0.2944(6)$	$1.1039(5)$	$0.9341(5)$	$0.0444(11)$
C5	$0.3261(7)$	$0.7589(5)$	$1.0381(6)$	$0.0527(13)$
C4	$0.2657(8)$	$0.5763(6)$	$0.8735(6)$	$0.0601(14)$
O4	$0.2224(8)$	$0.4741(5)$	$0.8805(6)$	$0.1078(17)$
C7	$0.1744(7)$	$0.8070(6)$	$0.5873(5)$	$0.0546(13)$
H7A	0.0604	0.8465	0.6691	0.065^{*}
H7B	0.1589	0.8820	0.5186	0.065^{*}
C8	$0.2037(11)$	$0.6549(7)$	$0.5290(9)$	$0.124(3)$
H8A	0.0984	0.6666	0.5044	0.187^{*}
H8B	0.2173	0.5809	0.5972	0.187^{*}
H8C	0.3149	0.6166	0.4468	0.187^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.0322(4)$	$0.0369(4)$	$0.0375(4)$	$-0.0163(3)$	$-0.0103(3)$	$0.0028(3)$
Fe2	$0.0377(4)$	$0.0317(3)$	$0.0461(4)$	$-0.0122(3)$	$-0.0159(3)$	$0.0021(3)$
S1	$0.0297(6)$	$0.0386(6)$	$0.0380(6)$	$-0.0142(5)$	$-0.0079(5)$	$-0.0008(5)$
S2	$0.0354(6)$	$0.0472(7)$	$0.0405(6)$	$-0.0142(5)$	$-0.0110(5)$	$-0.0050(5)$
O2	$0.078(3)$	$0.079(2)$	$0.058(2)$	$-0.048(2)$	$-0.024(2)$	$-0.0046(19)$
O1	$0.044(2)$	$0.109(3)$	$0.076(3)$	$-0.041(2)$	$-0.008(2)$	$0.001(2)$
O3	$0.086(3)$	$0.063(2)$	$0.086(3)$	$-0.018(2)$	$-0.042(3)$	$0.027(2)$
O5	$0.092(3)$	$0.077(3)$	$0.057(2)$	$-0.020(2)$	$-0.040(2)$	$0.009(2)$
C1	$0.045(3)$	$0.055(3)$	$0.046(3)$	$-0.025(3)$	$-0.011(2)$	$0.005(2)$
O6	$0.045(2)$	$0.079(3)$	$0.110(3)$	$0.004(2)$	$-0.029(2)$	$-0.025(2)$
C3	$0.052(3)$	$0.048(3)$	$0.045(3)$	$-0.022(2)$	$-0.019(2)$	$0.008(2)$
C6	$0.049(3)$	$0.049(3)$	$0.066(4)$	$-0.010(3)$	$-0.026(3)$	$-0.005(3)$
C2	$0.037(3)$	$0.049(3)$	$0.053(3)$	$-0.024(2)$	$-0.015(2)$	$0.007(2)$
C5	$0.053(3)$	$0.043(3)$	$0.056(3)$	$-0.010(2)$	$-0.023(3)$	$0.008(2)$
C4	$0.075(4)$	$0.047(3)$	$0.071(4)$	$-0.030(3)$	$-0.036(3)$	$0.015(3)$
O4	$0.150(5)$	$0.074(3)$	$0.149(4)$	$-0.078(3)$	$-0.076(4)$	$0.033(3)$
C7	$0.050(3)$	$0.062(3)$	$0.058(3)$	$-0.021(3)$	$-0.027(3)$	$-0.001(3)$

sup-4

C 8	$0.131(7)$	$0.086(5)$	$0.194(9)$	$-0.029(5)$	$-0.116(7)$	$-0.027(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

Fe1-C1	1.786 (5)	$\mathrm{O} 2-\mathrm{C} 2$	1.137 (5)
$\mathrm{Fe} 1-\mathrm{C} 2$	1.793 (5)	$\mathrm{O} 1-\mathrm{C} 1$	1.145 (5)
Fe1-C3	1.824 (5)	O3-C3	1.123 (5)
Fe1-S1	2.2393 (15)	O5-C5	1.140 (6)
Fe1-S2	2.2688 (16)	O6-C6	1.138 (6)
Fe1-Fe2	2.5183 (15)	C4-O4	1.138 (6)
Fe2-C5	1.789 (5)	C7-C8	1.451 (7)
Fe2-C6	1.794 (5)	C7-H7A	0.9700
Fe2-C4	1.806 (5)	C7-H7B	0.9700
Fe2-S1	2.2457 (15)	C8-H8A	0.9600
Fe2-S2	2.2711 (18)	C8-H8B	0.9600
S1-S1 ${ }^{\text {i }}$	2.113 (2)	C8-H8C	0.9600
S2-C7	1.842 (5)		
C1-Fe1-C2	90.8 (2)	C4-Fe2-Fe1	149.28 (16)
C1-Fe1-C3	99.4 (2)	S1-Fe2-Fe1	55.72 (4)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{C} 3$	99.1 (2)	S2-Fe2-Fe1	56.27 (4)
C1—Fe1-S1	157.40 (15)	S1 ${ }^{\text {i }}$-S1-Fe1	111.12 (8)
C2-Fe1-S1	94.02 (15)	S1 ${ }^{\text {i }}$-S1-Fe2	111.36 (8)
C3-Fe1-S1	101.64 (16)	$\mathrm{Fe} 1-\mathrm{S} 1-\mathrm{Fe} 2$	68.32 (5)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{S} 2$	87.52 (16)	C7-S2-Fe1	114.87 (16)
C2-Fe1-S2	156.70 (15)	C7-S2-Fe2	113.05 (18)
C3-Fe1-S2	104.06 (16)	Fe1-S2-Fe2	67.38 (5)
$\mathrm{S} 1-\mathrm{Fe} 1-\mathrm{S} 2$	79.39 (5)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{Fe} 1$	177.8 (5)
$\mathrm{C} 1-\mathrm{Fe} 1-\mathrm{Fe} 2$	101.44 (15)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{Fe} 1$	179.3 (5)
$\mathrm{C} 2-\mathrm{Fe} 1-\mathrm{Fe} 2$	101.42 (15)	O6-C6-Fe2	178.4 (5)
$\mathrm{C} 3-\mathrm{Fe} 1-\mathrm{Fe} 2$	150.37 (16)	$\mathrm{O} 2-\mathrm{C} 2-\mathrm{Fe} 1$	177.7 (4)
$\mathrm{S} 1-\mathrm{Fe} 1-\mathrm{Fe} 2$	55.96 (4)	O5-C5-Fe2	177.8 (5)
$\mathrm{S} 2-\mathrm{Fe} 1-\mathrm{Fe} 2$	56.35 (5)	$\mathrm{O} 4-\mathrm{C} 4-\mathrm{Fe} 2$	179.6 (6)
C5-Fe2-C6	90.6 (2)	C8-C7-S2	111.8 (4)
C5-Fe2-C4	99.0 (2)	C8-C7-H7A	109.3
C6-Fe2-C4	100.4 (2)	S2-C7-H7A	109.3
C5-Fe2-S1	94.44 (15)	C8-C7-H7B	109.3
C6-Fe2-S1	156.35 (18)	S2-C7-H7B	109.3
$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{S} 1$	101.55 (18)	H7A-C7-H7B	107.9
C5-Fe2-S2	158.11 (17)	C7-C8-H8A	109.5
C6-Fe2-S2	87.54 (17)	C7-C8-H8B	109.5
$\mathrm{C} 4-\mathrm{Fe} 2-\mathrm{S} 2$	102.75 (18)	H8A-C8-H8B	109.5
$\mathrm{S} 1-\mathrm{Fe} 2-\mathrm{S} 2$	79.21 (5)	C7-C8-H8C	109.5
C5-Fe2-Fe1	102.83 (16)	H8A-C8- H 8 C	109.5
C6-Fe2-Fe1	100.63 (17)	H8B-C8-H8C	109.5

Symmetry codes: (i) $-x,-y+2,-z+2$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2485).

